quarta-feira, 22 de maio de 2019
Ficha de trabalho global com exercícios resolvidos
segunda-feira, 20 de maio de 2019
Eliminação do parêntesis: JOGO DO SINAL
Para eliminarmos os parênteses devemos realizar um jogo de sinal, observa:
+ ( + ) = +
+ ( – ) = –
– ( + ) = –
– ( – ) = +
Exemplo I
(+3) + (-5) - (-4)=
=3 - 5 + 4=
=7 - 5 = 2
Exemplo II
(-5) + (+2) - (-1) + (-7)=
=-5 +2 + 1 -7=
=-12 + 3
= -9
Exemplo III
-21 -7 -6 -(-15) -2 -(-10)=
=-21 -7 -6 +15 -2 + 10
= -36 + 25
=-11
+ ( + ) = +
+ ( – ) = –
– ( + ) = –
– ( – ) = +
Exemplo I
(+3) + (-5) - (-4)=
=3 - 5 + 4=
=7 - 5 = 2
Exemplo II
(-5) + (+2) - (-1) + (-7)=
=-5 +2 + 1 -7=
=-12 + 3
= -9
Exemplo III
-21 -7 -6 -(-15) -2 -(-10)=
=-21 -7 -6 +15 -2 + 10
= -36 + 25
=-11
Ao eliminarmos os parêntesis e o sinal de - que os precede, devemos trocar os sinais dos números contidos nos parêntesis.
-(4 - 2 + 13) = -4 + 2 - 13
=-17 +2
= -15
SUBTRAÇÃO de números racionais
Para subtraímos dois números racionais, basta que adicionemos ao primeiro (aditivo) o simétrico do segundo.
Exemplo I
(+3) - (+10)= (+3) + (-10)= -7
Exemplo II
(-10) - (-11) = (-10) + (+11)= +1
Exemplo III
(-10) + (-1) - (+2) - (-12)=
= (-11 ) + ( -2) +(+12)=
=(-13) + (+12)
= -1
Jogo da Adição (seleciona inteiros)
Adição de números racionais
1ª Propriedade: sinais iguais: soma e conserva o sinal.
Exemplo I
(+5) + (+10) = + 15
(-18) + (-5) = - 23
2* Propriedade: sinais diferentes: subtrai e conserva o sinal do número de maior valor absoluto.
Exemplo II
(+ 18 ) + (-7)= + 11
(+6) + ( - 24) = - 18
Exemplo III
(+10) + (-7) + (+12) + (-15) + (+2) + (-1)=
=(+24) + (-23)=
= +1
Nota:
Quando adicionamos um número positivo e um número negativo com o mesmo valor absoluto, o resultado é sempre zero. Isto é conhecido como adição de números simétricos.(+4) + (-4)= 0
Exemplo I
(+5) + (+10) = + 15
(-18) + (-5) = - 23
2* Propriedade: sinais diferentes: subtrai e conserva o sinal do número de maior valor absoluto.
Exemplo II
(+ 18 ) + (-7)= + 11
(+6) + ( - 24) = - 18
Exemplo III
(+10) + (-7) + (+12) + (-15) + (+2) + (-1)=
=(+24) + (-23)=
= +1
Nota:
Quando adicionamos um número positivo e um número negativo com o mesmo valor absoluto, o resultado é sempre zero. Isto é conhecido como adição de números simétricos.(+4) + (-4)= 0
Colocar valores absolutos na reta numérica - VER VÍDEO
O que é o valor absoluto?
Porque é que precisamos de números negativos?
Os números negativos ajudam-nos a descrever números menores do que zero.
Exemplo I
Um banco usa números positivos para representar depósitos e
números negativos para representar levantamentos. Como irá um banco representar um levantamento de 19,43 euros?
19,43
euros
-19,43 euros
Exemplo II
No mês passado, o extrato da conta bancária da Luzia dizia que ela
tinha dinheiro na sua conta. O seu balanço bancário era de 109,32 euros. Este mês, o balanço bancário da
Luzia é de -87,12 euros. O que é que isto significa?
A Luzia ultrapassou o crédito da sua conta em 87,12 euros.
A Luzia tem 87,12 euros
na sua conta.
sexta-feira, 5 de abril de 2019
Para explorar: Adição de números racionais
Para explorar: Encontra as simetrias
Para explorar: Simetria de reflexão e de rotação
Para explorar - Simetria de rotação
Para explorar - Simetria de rotação
Simetrias de reflexão e rotacional
Simetria de reflexão
Uma figura tem simetria de reflexão quando existe uma reflexão tal que
as imagens dos pontos da figura por essa reflexão formam a mesma figura, isto é, quando a
figura tem um eixo de simetria.
Simetria de rotação
Uma figura tem simetria de rotação quando existe uma rotação de
ângulo não nulo e não giro tal que as imagens dos pontos da figura por essa rotação formam a
mesma figura.
quinta-feira, 4 de abril de 2019
Interpretar valor absoluto
Valor absoluto de um número racional
Simétrico de um número
quarta-feira, 3 de abril de 2019
Para explorar - Rotação
domingo, 31 de março de 2019
SIMETRIA DE REFLEXÃO E DE ROTAÇÃO
EIXOS DE SIMETRIA EM FIGURAS PLANAS. SIMETRIA DE REFLEXÃO
SIMETRIA ROTACIONAL II
SIMETRIA DE ROTAÇÃO I
ROTAÇÃO III
ROTAÇÃO II
ROTAÇÃO I
Rotação
Numa rotação todos os pontos de uma figura rodam à volta de um ponto (centro de rotação), num determinado sentido (positivo ou negativo) e segundo um determinado ângulo (ângulo de rotação).
Propriedades da Rotação
- a figura original e o seu transformado são geometricamente iguais.
- Um ponto e o seu transformado estão à mesma distância do centro de rotação.
quinta-feira, 14 de março de 2019
Problema resolvido
Na figura está representada uma lata cilíndrica e uma tira de
papel com a forma de retângulo que dá para revestir exatamente a superfície
lateral da lata.
Sabe-se que:
· o diâmetro da base da lata mede 5
cm;
· a altura da lata mede 4 cm.
Utiliza 3,14 para valor
aproximado de π
a. Determina, em
centímetros, o comprimento da tira de papel.
O comprimento da tira de papel = perímetro da base da lata.Perímetro da base da lata= π x diâmetro
= 3,14 x 5 cm
= 15,7 cm
Resposta: O comprimento da tira de papel é 15,7 cm.
b. Determina o volume do cilindro
V cilindro = A base
x altura= p x r x r x altura
V cilindro = 3,14 x 2,5 cm x 2,5 cm
x 4 cm =
= 78,5 cm3
Resposta: O volume do cilindro é 78,5 cm3
Problema resolvido
Na figura estão representadas
duas caixas, A e B.
A B
A caixa A tem a
forma de um prisma hexagonal com 5 cm de altura e área da base 125 cm2.
A caixa B tem a forma de um cilindro com 8 cm de altura e base de diâmetro 8
cm.
Determina qual das duas caixas tem maior capacidade.
Nos teus cálculos, considera 3,14 como valor aproximado
de π
V prisma hexagonal =125 cm2 x 5cm
= 625 cm3
V cilindro = A base x altura= π x r x r x altura
raio = 8 cm : 2 = 4 cmV cilindro = 3,14 x 4 cm x 4 cm x 8 cm
= 401, 92 cm2
Resposta: A caixa com maior capacidade é a Caixa A.
Exercício resolvido
Considera
a sequência dos números: 1 4 7 10 13
a. Indica o 7.º
termo desta sequência.
O
7.º termo da sequência é 19.
b. Identifica a expressão
geradora desta sequência:
A expressão geradora desta sequência é: 3 x n - 2Conclusão da correção da ficha de trabalho
Exercício 6.
Um pentágono regular tem de área 27,52 cm2 e 5 cm de lado.
Um pentágono regular tem de área 27,52 cm2 e 5 cm de lado.
Calcula o apótema do pentágono.
Resolução
A polígono
regular = Perímetro do polígono : 2 x apótema
27,52
cm2 = (
5 x 5 cm ): 2 x ap
27,52 cm2 = 25 cm : 2 x ap
ap= 27,52 cm2 : 12,5 cm
ap = 2,2016 cm Resposta : O apótema do pentágono é 2,2016 cm
Exercício 7.
Numa turma de 25 alunos os resultados dos testes foram os
seguintes:
- 20 alunos com classificação positiva a Língua Portuguesa;
- 18 alunos com
classificação positiva a Matemática;
- 4 alunos com classificação negativa a Matemática e a
Língua Portuguesa.
Qual foi a percentagem de alunos que teve classificação positiva a
Língua Portuguesa e a Matemática?
Resolução
21 alunos tiveram classificação positiva a Língua Portuguesa e a Matemática.
Nº de alunos (%)
25 100
21 x
x= (21 x 100 ): 25
x= 84%
Resposta : 84% dos alunos tiveram classificação positiva a Língua Portuguesa e Matemática.
segunda-feira, 11 de março de 2019
Revisões - 5ºano
segunda-feira, 25 de fevereiro de 2019
Sequências e Regularidades
segunda-feira, 18 de fevereiro de 2019
Problemas resolvidos: Escalas
a. Qual é a distância real, em quilómetros, que corresponde a 5 cm no mapa?
desenho (cm) real (cm)
1 50 000
5 y
y= 5 x 50000
y= 250 000 cm = 2,5 km
Resposta: A distância real é de 2,5 km
b. Duas localidades distam, em linha reta, 3 km. Qual é a distância das duas
localidades no mapa?
3 km = 300 000 cm
desenho (cm) real (cm)
1 50 000
y 300 000
50 000 x y = 1 x 300 000
y= 300 000 : 50 000
y = 6 cm
Resposta: A distância das duas localidades no mapa é de 6 cm
2. Um casal pretende comprar uma casa que ainda
está em projecto (figura ao lado).
A sala mede na planta 8 cm de comprimento. Sabendo que cada centímetro no mapa representa 2 metros na realidade, qual será o comprimento da sala quando for construída?
2 m = 200 cm
y= 8 x 200
y = 1 600 cm = 16 m
A sala mede na planta 8 cm de comprimento. Sabendo que cada centímetro no mapa representa 2 metros na realidade, qual será o comprimento da sala quando for construída?
2 m = 200 cm
desenho (cm) real (cm)
1 200
8 yy= 8 x 200
y = 1 600 cm = 16 m
Resposta: O comprimento da sala será de 16 metros quando for construída.
Subscrever:
Mensagens (Atom)